Silicon nano-oxidation using AFM tips. / Nano-oxidação do silício utilizando sonda de AFM.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Local anodic oxidation of silicon using Atomic Force Microscopy (AFM) was investigated by applying a negative voltage between silicon nitride tip and Si surfaces. All samples were cleaned with an ammonium-based solution known in literature as standard cleaning 1 (SC1) or a dip in a diluted hydrofluoric acid solution followed by SC1 or, also, boiling in isopropyl alcohol. Localized squares patterns of oxide, 0.25 µm² in area, were formed by growing parallel lines with constant interlinear spacing and length and several scans in the same area. From AFM analysis with non-biased tip, it was obtained 3D and section profiles, which were used to obtain the oxide thickness as a function of the applied voltage, number of scans and interval of time after SC1 cleaning. It was noteworthy that thickness increases with the applied negative voltage and with the number of scans. Simulations were performed in order to model voltage and electric field distributions of the system tip-air-silicon or tip-air-oxide-silicon(substrate) indicating a local oxidation assisted by high electrical field and local ionic diffusion of species. It was simulated the effect of tip termination, circular or sharpen, on the electric field and voltage distributions. In addition, oxidations were performed using Au coated tips onto Si surfaces previously dipped in diluted hydrofluoric acid solution followed or not by SC1 cleaning process. Finally, infrared absorption analysis (FTIR) were performed in order to analise the structure of the obtained anodic oxides. The anodic oxidation using silicon nitride tips has occurred only after SC1 precleaning step, being catalized by high electric field (_ 106 V/cm), having as reagents, the adsorbed water species and hydrolized native oxide on the surface after the SC1 cleaning step.

ASSUNTO(S)

nanolithography silício silicon microscópio de força atômica (afm) Óxido de silício silicon oxide oxidação anódica local (lao) nanolitografia atomic force microscopy (afm) local anodic oxidation (lao)

Documentos Relacionados