Role of beta-lactamases and outer membrane proteins in multiple beta-lactam resistance of Enterobacter cloacae.

AUTOR(ES)
RESUMO

The chromosomal beta-lactamase and outer membrane proteins of Enterobacter cloacae were examined to determine their relative contributions to multiple antibiotic resistance in this organism. Mutants altered in beta-lactamase expression, whether derived in the laboratory or recovered from patients treated with one of the new beta-lactam antibiotics, were found to have no detectable alterations in outer membrane proteins. Derepression of beta-lactamase in these mutants was associated with high-level resistance to multiple beta-lactam antibiotics, while loss of inducible beta-lactamase (i.e., production of basal enzyme levels only) was associated with acquisition of susceptibility to many beta-lactam antibiotics, including cephalothin. In contrast, alteration in outer membrane proteins was associated with only moderate-level resistance to beta-lactam antibiotics. However, this included resistance to such drugs as amdinocillin and Sch 34343, which were unaffected by derepression of beta-lactamase. Resistance to chloramphenicol and tetracycline also accompanied changes in outer membrane proteins. Although the outer membrane proteins of various strains of E. cloacae were similar, there did appear to be some major strain-to-strain variations. Thus, it appears that alterations in both beta-lactamase and outer membrane proteins can affect the susceptibility of E. cloacae to many antibiotics. However, alterations in beta-lactamase alone are sufficient to produce high-level multiple beta-lactam resistance in this organism.

Documentos Relacionados