Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae.

AUTOR(ES)
RESUMO

Strains of Enterobacter cloacae were selected on the basis of resistance to aztreonam, ceftazidime, moxalactam, or imipenem. All strains produced the same E2 beta-lactamase, with an isoelectric point greater than 9.5 and with high hydrolytic activity in the presence of cephaloridine. Resistance to beta-lactams could not be correlated with the amount of beta-lactamase present in the various strains. beta-Lactamase activity was induced strongly by moxalactam and imipenem in the wild-type and moxalactam-resistant strains, with beta-lactamase representing as much as 4% of the total cellular protein after induction (2 X 10(5) molecules per cell). Ceftazidime and aztreonam were poor inducers. None of the antibiotics studied was readily hydrolyzed by the E2 beta-lactamase; aztreonam and moxalactam inhibited the enzyme with apparent Ki values of 1.2 and 100 nM, respectively. Aztreonam, which bound covalently to the E2 beta-lactamase with a half-life of 2.3 h at 25 degrees C, was used to measure penetrability of beta-lactam into the periplasmic space of the resistant E. cloacae strains. In all of the E2-producing organisms studied, a significant permeability barrier existed. A maximum concentration of 0.02 microgram of aztreonam per ml should have saturated the periplasmic beta-lactamase in the highest enzyme producers studied. However, fully active beta-lactamase was observed in the periplasm of cells exposed to aztreonam at concentrations at least 1,000-fold higher than that theoretically necessary to inhibit the total enzyme within the cell. Thus, the major cause for resistance to beta-lactam antibiotics in these E. cloacae strains was lack of penetration across the outer membrane.

Documentos Relacionados