Proposição de um modelo matemático para o estudo da alteração mecânica do músculo liso da traquéia de ratos Wistar exposto à solução de formaldeído e submetido a doses crescentes de um agente contrátil / Proposition of a mathematical model to study the mechanical change of the smooth muscle of the trachea of Wistar rats exposed to formaldehyde solution and subjected to increasing doses of a contractile agent

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

23/07/2012

RESUMO

The viscoelastic properties of the mammalian lung is mainly determined by the mechanical properties, structure and regulation of the airways smooth muscle. The exposure to polluted air may deteriorate these properties with harmful consequences to individual health. Formaldehyde is an important indoor pollutant that permeate through the smooth muscle tissue forming covalent bonds between proteins in the extracellular matrix and intracellular protein structure deteriorating some of the airways smooth muscle functions, changing mechanical properties, and inducing hyperresponsiveness. The first objectives of this work was to develop a two-dimensional viscoelastic network model based on Voronoi tessellation to reproduce some of the mechanical properties of airway smooth muscle at the tissue level. The second objective was to compare the results obtained with our model with those previously observed in tissue strip experiments after the tissue exposure to formaldehyde. Our model simulates the mechanical properties of airway smooth muscle using a set of springs and dashpot. This set of springs and dashpot not only mimic the viscoelastic properties of the smooth muscle but also the cells contractile apparatus. We hypothesize that the formation of covalent bonds, due to the action formaldehyde, can be represented in the model by a simple change in the elastic constant of the springs, while the action of methacholine reduce the size of the spring. Our model is able to reproduce an isometric force measurement, where the smooth muscle is subjected to a titration of a contractile agent, with and without an in vitro exposure to formaldehyde. Thus, our new mechanistic approaches incorporates several well know features of the contractile system of the cells in a tissue level model. The model can also be used in different biological scales

ASSUNTO(S)

formaldehyde formaldeído metacolina methacholine músculo liso ratos wistar smooth muscle viscoelasticidade viscoelasticity voronoi voronoi wistar rats

Documentos Relacionados