PHYSICS OF STRONGLY CORRELATED AND DISORDERED SYSTEMS / FÍSICA DE SISTEMAS FORTEMENTE CORRELACIONADOS E DESORDENADOS

AUTOR(ES)
DATA DE PUBLICAÇÃO

2004

RESUMO

In this thesis we study the properties of strongly correlated and disordered materials, using model Hamiltonians to describe them. The thesis is divided in two parts. The first one studies the periodic Anderson model used to describe the properties of a Kondo insulator. In particular we take Ce3Bi4Pt3 as a paradigmatic compound, characterized by a small gap(of the order of meV ). For small concentration of metallic impurities, ions of La substituting Ce, the alloy (Ce1-xLax)Bi4Pt3 suffers a metal- insulator transition. The periodic Anderson Hamiltonian is solved using the atomic solution that is embedded into a Bethe lattice. This model explains the experimental results as the resistivity as a function of temperature for different concentrations of ions of La, as well as, the optical properties of the pure system. The Anderson localization is analyzed studying the electric conductivity of the system. The second part of the thesis is dedicated to study the property of a system described by the Falicov- Kimball Hamiltonian. This Hamiltonian has been used to study the valence and metal-insulator transitions in Transitions Metal and Rare Earth compounds. In this model, the character of these transitions is still not well understood, since it is very dependent of the approximation used. We study the Falicov-Kimball Hamiltonian without spin. The conduction band is exactly described since we show its equivalence with the problem of an alloy. The f states are studied using the equation of motion for the Green functions, decoupling them in a way defined as the Dynamic Narrowing Approximation(DNA). We study the occupation of the local states as a function of energy and other electronic properties. For an alloy the interplay between the electronic correlation and disorder is analized. The different phases that appear in the system, as metallic and Anderson and Mott insulating, are investigated as a function of the parameters that define the system.

ASSUNTO(S)

sistema eletronico electronic system fermions pesados valence transition isolantes kondo transicao de valencia kondo insulators heavy fermions falicov-kimball hamiltonian hamiltoniano de falicov-kimball

Documentos Relacionados