Efeitos de temperatura e de interação finita em sistemas desordenados correlacionados

AUTOR(ES)
DATA DE PUBLICAÇÃO

2003

RESUMO

The main goal of this work is to study the role of disorder in strongly correlated systems, where the electron-electron interaction is comparable to or dominates over the electron kinetic energy. Keeping this in mind, we solve the Hubbard model and the Anderson lattice model in the presence of disorder. The main theory in which our work is based is the Dynamical Mean Field Theory, which is used to describe the electron-electron interaction present in these models. According to this theory, in the absence of disorder, the lattice problem is mapped onto a single impurity problem embedded in a self-consistently calculated bath. Thus, the solution of the models referred to above is obtained by solving a single impurity problem, which is done in our work through perturbation theory in the electron-electron interaction at finite temperature. An extension of the Dynamical Mean Field Theory is used to account fi)r Anderson localization effects. The motivation for this study comes from the experimental results observed in two types of systems: weakly disordered and dilute two dimensional electron systems and heavy fermion alloys. In the former, the experimental results point to the existence of a metallic phase and also of a metal-insulator transition in two dimensions. In the latter, a behavior different from that predicted by the Landau Fermi liquid theory for the thermodynamics and transport properties is observed. Our results for the disordered Hubbard model, which can be used to describe the Mott metal-insulator transition, show the importance of taking into account inelastic scattering effects in theories trying to explain the experimental results. For the Anderson lattice model, the dependence with temperature we find for the transport properties can be identified with the Mooij correlations, which are observed in many disordered metals

ASSUNTO(S)

modelo de interação eletron-eletron modelo de hubbard anderson sistemas desordenados

Documentos Relacionados