O ecocardiograma como preditor de variáveis hemodinâmicas nas cardiopatias congênitas com hipertensão pulmonar e nos candidatos a transplante cardíaco / Echocardiographyc estimates of hemodynamic parameters in pulmonary hypertension associated with congenital cardiac shunts or cardiomyopathy

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Pulmonary hypertension is defined as a mean pulmonary arterial pressure of >25 mmHg registered at rest, during cardiac catheterization. A number of conditions have been demonstrated to cause pulmonary hypertension, including congenital (septal defects) and acquired heart diseases, chronic lung disease, connective-tissue disease, thromboembolic disorders, schistosomosiasis, HIV infection, use of anorexigens, etc. In the absence of all these conditions, a diagnosis of idiopathic pulmonary arterial hypertension is established. In the specific setting of the cardiac disorders, either increased pulmonary blood flow (congenital cardiac septal defects) or altered pulmonary venous drainage ( left ventricular systolic or diastolic dysfunction, mitral valve disease, abnormalities of the left atrium) can cause pulmonary vascular abnormalities leading to pulmonary hypertension. Moderate to severe pulmonary vascular abnormalities lead to increased risk of postoperative complications and/or poor long-term outcomes in patients with septal defects undergoing surgical repair or those with cardiomyopathy undergoing heart transplantation. Thus, for these patients, preoperative measurement of pulmonary vascular resistance by cardiac catheterization is mandatory. In general, those with a pulmonary vascular resistance index of >6 Wood units·m2 (pulmonary to systemic vascular resistance ratio of >0,3) are not assigned to operation. In the last decades, there has been growing interest on the development of noninvasive methods/parameters that could allow for decision about the therapeutic strategies without cardiac catheterization. In this way, several parameters derived from Doppler-echocardiographic analysis or magnetic resonance has been used to predict hemodynamic data. In the present study, we used echocardiographic parameters to determine which patients with congenital cardiac septal defects or cardiomyopathy could theoretically be assigned to surgical treatments without catheterization. In order to correlate echocardiographic information with data derived from cardiac catheterization, both procedures were carried out simultaneously. Catheterization was performed as part of the routine evaluation, not specifically for research purposes. Thirty consecutive patients with congenital septal defects (aged 0,41 to 58,2 years) and 23 consecutive patients with cardiomyopathy (aged 0,40 to 15 years) were enrolled Doppler-echocardiographic evaluation consisted of flow analysis at the right and left ventricular outflow tract and pulmonary vein. The following parameters were recorded: right ventricular ejection time (RVET), acceleration time (AcT); right ventricular pre-ejection period (RVPEP); velocity time integral of the right ventricular systolic flow (VTIRVOT); velocity time integral of pulmonary venous flow (VTIPV); indexes involving these variables (AcT/RVET, RVPEP/RVET, RVPEP/VTIRVOT); pulmonary to systemic blood flow ratio (Qp/Qs). The parameters derived from cardiac catheterization included pulmonary and systemic pressures, blood flow and vascular resistance. Blood flow and vascular resistance were expressed as ratios Qp/Qs and PVR/SVR, respectively pulmonary to systemic blood flow and vascular resistance ratios). In patients with congenital septal defects, a Qp/Qs of 2,89 by Doppler-echocardiographic analysis was predictive of Qp/Qs >3,0 by cardiac catheterization, with specificity >0.78. For values of 4.0 (echocardiography), the specificity was >0.91. A VTIRVOT of 22 cm or VTIPV 20 cm could predict PVR/SVR ratios 0.1 with specificity >0.81. For values of 27 cm and 24 cm respectively, the specificity was >0.93. In patients with cardiomyopathy, a AcT of 95 msec was predictive of PVR/SVR 0.1 with specificity >0.85. Doppler-echocardiographic parameters could not predict absolute values of hemodynamic variables with acceptable accuracy. Based on these results we conclude that Doppler-echocardiographic analysis can be used to identify patients with low levels of pulmonary vascular resistance (those with septal defects or cardiomyopathy) and increased pulmonary blood flow (septal defects).These patients could be safely assigned surgical treatments with no need for invasive evaluation. In view of the relatively low levels of sensitivity that we observed (<0.65), some patients with favourable pulmonary hemodynamics would still be assigned to catheterization in case of adoption of the cut-off levels used in the study. Prediction of absolute values of hemodynamic parameters was not considered sufficiently accurate for decision making. Further studies are obviously necessary to evaluate long-term outcomes in patients treated on the basis of noninvasive evaluation only.

ASSUNTO(S)

cardiomiopatias hipertensão pulmonar echocardiography doppler vascular resistance resistência vascular cardiomyopathies cardiopatias congênitas pulmonary hypertension congenital heart defects ecocardiografia doppler

Documentos Relacionados