Estudos dos genes Tbx19 e Crhr1 em cães da raça poodle com hipercortisolismo ACTH-dependente / Study of Tbx19 and Crhr1 genes in Poodle dogs with ACTH-dependent hypercortisolism

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

The ACTH-dependent hypercortisolism (ADH), also called Cushings disease, is one of the most commonly diagnosed endocrine diseases in dogs. The symptoms occur due to glucocorticoids excess leading to gluconeogenic, catabolic, anti-inflammatory and immunosuppressive effects in multiple organs and systems. There is a high incidence of Cushings disease in Poodles and familial disease has been identified suggesting a genetic involvement. The molecular changes that lead to the development of ACTH-dependent hypercortisolism in dogs remain undefined. Among genes implicated in corticotroph development and in corticotropic axis regulation, we would like to point out Tbx19 and Crhr1, respectively. Tbx19 gene is a transcription factor required for transcription of the proopiomelanocortin gene and for terminal differentiation of the corticotroph. Inactivating mutations in that gene are associated with human isolated ACTH deficiency. Since Tbx19 is present exclusively in normal and adenomatous corticotroph cells, its involvement in the secretion of ACTH in Cushings disease was proposed. The presence of CRHR1 in corticotrophinomas in humans and dogs raised the possibility of its involvement in pituitary tumorigenesis, promoting prolonged cell stimulation, even in the absence of hypothalamic hormones. An increased expression of the CRHR1 mRNA was demonstrated in human and canine ACTH-secreting pituitary adenomas, despite the autonomous ACTH secretion and the low portal levels of CRH. The aim of this study was to investigate Tbx19 and Crhr1 coding region mutations in Poodle dogs with ACTH-dependent hypercortisolism. We studied 50 Poodle dogs with ADH (33 females and 17 males) with a mean age of 8.71 years and 50 control dogs of the same breed (32 females and 18 males) older than 6 years (mean 9.38 years) and without endocrinopathies. Genomic DNA was extracted from peripheral blood, amplified by the polymerase chain reaction (PCR) using specific intronic primers and submitted to automatic sequence. We identified a new allelic variant in the Tbx19 and Crhr1 coding regions. The allelic variant p. S343G in the Tbx19 gene was found in two unrelated dogs, but also in two normal controls, suggesting that this is a new polymorphism. The Crhr1 allelic variant p. V97M was found in heterozygosity in one animal with ACTH-dependent hypercortisolism, but was not observed in one hundred normal alleles. The codon 97 is located in the extracellular amino terminal domain of the Crhr1 and is extremely important for high affinity ligand binding. The molecular analysis of the quaternary structure of normal and mutated proteins, followed by evaluation of the binding energy of the contact surface between the hormone and the receptor showed a structural rearrangement of the mutated protein by changing the contact surface between the CRH and its receptor CRHR1, resulting in a binding energy 17% higher than the wild type. In conclusion, this study did not identify Tbx19 mutations associated with canine ACTH-dependent hypercortisolism, but on the other hand, we first identified a Crhr1 gain-of-function mutation probably responsible for ACTH-dependent hypercortisolism in a Poodle dog of our cohort.

ASSUNTO(S)

mutation/genetics dogs polimorfismo genético/genética transcription factors/physiology fatores de transcrição/fisiologia polimorphism genetic/genetics cães pituitary acth hypersecretion/etiology hipersecreção hipofisária de acth/etiologia receptors corticotropin-releasing hormone/physiology mutação/genética receptores de hormônio liberador de corticotropina/fisiologia

Documentos Relacionados