Estudo de argamassas com agregados reciclados contaminados por gesso de construção. / A study on mortars produced with CDW recycled aggregates containing cypsum plaster as impurity.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2004

RESUMO

This is an abstract of a Master of Science project carried out at EPUSP, Universidade de São Paulo, Brazil, aimed at investigating the effects of the use of recycled aggregates contaminated by small contents of gypsum plaster on masonry mortars. In the presence of moisture and by the action of gypsum minerals or other more complex ones that may occur, there is the risk of the formation of cracks, efflorescence, and progressive deterioration of the masonry walls. An experimental program was thus developed for the rapid assessment of these processes by assessing the chemical, physical and mechanical properties of twenty mortar mixes. Local materials used for masonry and concrete in Socorro-SP, Brazil, were selected, as in that location there exists a recycling unit producing recycled sand for mortars with a high content of fines. Four recycled aggregates of very fine grain size and similar to each other were artificially produced by controlled construction, demolition and recycling processes. Thus a recycled, non-contaminated aggregate (A1, with SO3 content equal to 0,2 %) and three other identical ones were studied, with expected progressive contamination (A2, A3 and A4, that result with a total SO3 content about 0,5 % to 0,6 %). Four groups of mortars were thus produced with varying cement content (200, 150 and 100 kg/m3), cement type (Brazilian CP II and CP III) and also with and without the use of a comercial hydrated lime, Brazilian type CH III (of a high carbonate filler content). The anhydrous recycled aggregate content in the mortars varied between 1300 and 1200 kg/m3. In each group a blended mortar was also produced, containing very pure quartzous sand, of grain size and mix proportions closer to standard masonry mortars. The approach followed in the experimental program was accelerated aging test of mortars, starting at 63 days of age and at 7 day cycles in the wet chamber, alternated by 7 days in the ventilated oven at 40 oC. This cycling was adopted after critical bibliographical research and under a holistic process of deterioration set up by Collepardi (2003), also for gypsum-contaminated aggregates. From 63 days of age, the following properties were regularly characterized for the mortars: flexural modulus (tensile strength in bending), compressive strength, and static and dynamic elasticity modulus. During cycling, complementary tests were done of thermogravimetrical analysis and quantitative chemical analysis of total soluble sulphate in mortars. A number of the mortar test specimens was left in the dry chamber and tested at 175 days, including tendency to efflorescence. In between 63 and 175 days, 8 weathering cycles were done, and it was concluded that the main mechanical property affected during cycling was tensile strength in bending (indirect tensile strength) of mortars, and this occurred from 91 days, in the four groups of mortars containing recycled aggregates, and in between 63 and 91 days a significant evolution was measured of carbonation by thermogravimetry. The groups of mixed mortars with cement and hydrated lime showed better performance in this study than the plain cement and fine sand mortars, also as regards efflorescence. The results here obtained are to be seen as restricted to this case study, yet they allow us to conclude that the use of recycled aggregates containing even low levels of gypsum plaster as impurity in the production of mortars was sufficient to produce significant alterations in the mechanical performance, as well as the degree of soluble sulphate of mortars, that got altered in a way coherent with the cycling process, and it is possible to interpret this based on more recent theories by experts in the subject. Last, this work confirmed that it is advisable to look for a maximum soluble sulphate limit ranging from 0,1 % to 0,2 % by weight of recycled aggregates for mortars. Such levels was set up by a German institution specializing in masonry durability. It was also concluded that the requirements of DIN 4226-100 (<600 mg/L of SO4) can be used as appropriate in the range mentioned.

ASSUNTO(S)

recycled aggregate sulfates mortar gesso de construção agregado reciclado plaster of paris argamassa sulfatos

Documentos Relacionados