Development of a computaciona model for thermal cracking processes / Desenvolvimento de modelo computacional para craqueamento termico

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

The mathematical modeling and the computational simulation of a process furnace for thermal conversion of heavy oil fractions is developed in this work. Kinetics of conversion reactions is from Sugaya (1993). It is based in a first order irreversible reaction with 9 lumps and 24 pseudocomponents. The 24 pseudocomponents are characterized and their properties calculated by different correlations and methods available in the literature. As walks through the furnace tubes, the feed, initially liquid, reacts generating light fractions and gas. The state of the mixture is checked for each integration step by a subroutine based on the Soave Redlich Kwong equation. When two phases are flowing, properties of the liquid and vapor are calculated to determine the flow regime and the holdup. This parameter allows to calculate the transport properties and the heat transfer and pressure drop coefficients. Initially, a thermal cracking pilot plant is simulated. This unit is formed by a reactor coil that is isothermally quenched; consequently, only mass balance is integrated. The program finds the kinetic constants by a Newton – Raphson algorithm whose objective function is the difference between the calculated and measured conversion. Finally, an industrial furnace is simulated. Mass, momentum, wall temperature and energy balances are integrated. Results show good agreement whit the data reported from the industrial furnace 23-H-1 (Refinery Presidente Bernardes, Cubatão) for thermal cracking. Coke deposition in tubes is tested to analyze the performance of the process. The program developed in this work allows an insight study of thermal cracking processes such as delayed coking and visbreaking. New operational parameters, different feeds, control strategies and many other parameters can be studied.

ASSUNTO(S)

modeling thermal cracking heavy petroleum fractions simulação por computador modeling pilot plant fornos simulation industrial furnace craqueamento petroleo - refinação modelos matematicos

Documentos Relacionados