Desgaste e fadiga térmica de ligas aço matriz + NbC. / Wear and thermal fatigue of matrix steel + NbCalloys.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2006

RESUMO

The concept of ?matrix steel + NbC? was used to cast alloys with the M2 steel matrix (0,5%C ? 2%W ? 3%Mo ? 4,6%Cr ? 1%V) and different volume fractions of niobium carbides. Niobium (2,5 e 5%) and stoichiometric carbon were added to produce NbC carbides and titanium (0,1%) to modify de NbC carbides morphology. NbC presented three basic morphologies: Chinese script (coupled eutectic); primary carbides with cross morphology and polygonal primary and eutectic carbides (divorced eutectics). After heat treatment of quench and temper in order to obtain the maximum hardness, the alloys were submitted to thermal fatigue test (100 cycles, 650ºC), dry rubber wheel abrasive wear test (130N, 200rpm, 30min, hematite as abrasive) and reciprocating sliding wear test (70,6N, amplitude: 6mm, frequency: 6Hz, 2h). The alloys with polygonal NbC carbides and lower volume fractions of carbides (for the same morphology) showed the best behaviour due to their low ?carbide continuity/carbide free path? ratio of the microstructure. The alloys were characterized by optical microscopy and SEM to investigate de cracks nucleation and propagation. In the dry rubber wheel tests, polygonal NbC eutectic carbides (divorced eutectics) showed better behaviour than Chinese script NbC eutectic carbides. High volume fractions of NbC carbides improved the abrasion resistance until a maximum and after that, the presence of big primary NbC carbides, lowered the abrasion resistance due to cracks in those big carbides. The results of the reciprocating sliding tests have not allowed to rank the performance of the alloys. Abrasion and sliding specimens were submitted to optical microscopy and SEM in order to evaluate the prevalent wear mechanisms. One high speed steel for hot rolling mill rolls (2%C ? 5%Cr ? 5%Mo ? 5%V) was tested under the same conditions that the alloys studied were tested in order to compare their performances. The high speed steel showed better performance in abrasion and reciprocating sliding wear due to the high volume fraction of coupled eutectic carbides and lower performance in thermal fatigue due to the high ?carbide continuity/carbide free path? ratio of the microstructure than the alloys studied.

ASSUNTO(S)

thermal fatigue matrix steel + nbc desgaste abrasivo fadiga térmica aço matriz + nbc sliding wear high speed steel abrasive wear desgaste por deslizamento aço rápido

Documentos Relacionados