Water reabsorption capacity of the proximal convoluted tubule: a microperfusion study on rat kidney.

AUTOR(ES)
RESUMO

1. The differences in the water reabsorption capacity observed from one proximal tubule to another were investigated in vivo by continuous microperfusion. 2. Two to seven loops were punctured along the same tubule. The [3H]inulin, 22Na, [14C]glucose, sodium, chloride and magnesium concentrations as well as the osmolality of the collected samples were studied as a function of the perfused length. 3. With Ringer bicarbonate solution perfused in Saclay Wistar rats, the water reabsorption capacity ranged from 0 to 3 nl . min-1 . mm-1 depending on the tubule. This reabsorption rate was closely correlated with the unidirectional reabsorption flux of sodium, and with the rise in tubular chloride and magnesium concentrations. 4. In Munich Wistar rats with glomeruli accessible at the kidney surface, tubule perfusion with a Ringer bicarbonate solution showed that the highest water reabsorption rates per mm of tubule were found for the perfusion sites closest to the glomerulus; water fluxes were also positively correlated with glucose transport. 5. In a second series of experiments on Saclay rats, perfusion of a Ringer solution containing a high chloride concentration (137 m-equiv/l.) was unable to increase the water reabsorption rate compared to the control perfusion; here again, water fluxes were positively correlated with glucose transport.

Documentos Relacionados