Theoretical-experimental study of the drain current transient and generation lifetime in SOI MOSFETs technologies. / Estudo teórico-experimental do transitório da corrente de dreno e do tempo de vida de geração em tecnologias SOI MOSFETs.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

This work presents a study of drain current switch-off transients and extraction methods of the generation lifetime in partially depleted SOI nMOSFET transistors of single gate, double gate and triple gate FinFETs. This study is accomplished through two-dimensional numerical simulations and compared with experimental data of devices fabricated in the IMEC (Interuniversity Microelectronics Center), which is in the Catholic University of Leuven (KUL) in Belgium. Initially, it was analyzed the gate oxide thickness and temperature influences on the carrier generation lifetime extraction using the drain current transient. Beyond the generation lifetime, other electric parameters were also analyzed, such as the threshold voltage, the surface potential and the activation energy. Based on process parameter influence study in the determination method of the generation lifetime, it was possible to propose a simple model in order to estimate the carrier generation lifetime as a function of the temperature. This model was experimentally applied and compared to simulated results and it presented a maximum error of 5%. A detailed analysis of the effect of HALO implanted region in the generation lifetime extraction was based on the drain current transient. The results obtained through this study made possible the proposal of a new model. The proposed model considers not only the laterally non-uniform channel profile due to the presence of a HALO implanted region but also the amount of charge controlled by drain and source junctions, a never-before-seen topic in the literature. The new model sensitivity was tested with a ± 20% variation of the doping concentration of the channel and implanted HALO region resulting in a maximum error of 9.2%. Taking the obtained results into consideration, it was possible to analyze the drain current as a function of the channel length reduction. The great efficiency presented by the gate in double gate devices, compared to the single gate ones, was observed through the study of the body potential behavior in this structure. This analysis resulted in the inclusion of a silicon film thickness dependent parameter that made possible the adaptation of the proposed model in this work also for double gate devices. The obtained results presented a good agreement with the channel length variation, temperature and with the doping concentration variation in the channel and HALO implanted region. Finally, it was presented a study about the drain current transient in triple gate FinFET devices, with and without the HALO implanted region, taking the geometric parameter variation into consideration. Through the analysis of the threshold voltage, the transconductance and the drain current transient of the devices, it was possible to observe that the devices without HALO are remarkably more susceptible to the floating body effects influence.

ASSUNTO(S)

electrical characterization transistores lifetime simulação soi mosfet modelos analíticos dispositivos eletrônicos generation

Documentos Relacionados