Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition.

AUTOR(ES)
RESUMO

The ability of phosphorothioate (POS) oligonucleotides to recognise and bind to homopurine-homopyrimidine DNA double-stranded sites via triple helix formation has been investigated. It has been found that the homologous pyrimidine POS sequences Y11-Si (i = 0, 1,2,3,4,10), which have been obtained by an increasing sulphur substitution in the sugar-phosphate backbone of d(CTTCCTCCTCT) (Y11), and the target hairpin duplex d(GAAGGAGGAGA-T4-TCTCCTCCTTC) (h26) can form stable triple helices, as indicated by PAGE, CD and UV melting experiments. The thermal stability of the triple helices depends on the number of POS linkages in the third Y11 strand, varying from 48 degrees C (Y11, with only phosphate groups, PO2) to 31 degrees C (Y11-S10 containing exclusively thioate groups). On average, a Tm depression of about 2 degrees C per POS linkage introduced in Y11 was observed. CD data indicate that the sulphurization of the third strand results in minimal changes of triple-stranded structures. The energetics of the triplex-to-hairpin plus single-strand transition has been determined by van't Hoff analyses of the melting curves. In free energy terms, the POS triplexes h26.Y11-Si are less stable than the normal PO2 h26.Y11 triplex by values between 2.7 and 5.4 kcal/mol, depending on the number of POS linkages contained in the third strand. Phosphorothioate oligonucleotides being resistant towards several nucleases offer an interesting choice as gene blockers in antisense strategy. Thus, their ability to inhibit transcription via triple helix formation has been examined in vitro. We found that triplex-forming POS oligonucleotides of 20 bases in length (with a cytosine contents of 45%), containing either 10% or 26% thioate groups, strongly repress the transcription activity of the bacteriophage T7 RNA polymerase at pH 6.9, when used in excess compared to the target (mol oligo/mol template = 125). The here reported data are useful for designing phosphorothioate oligonucleotides targeted to genomic DNA in antigene strategy.

Documentos Relacionados