Propriedades eletrônicas de nanofios semicondutores / Electronic properties of semiconductor nanowires

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

We have performed an extensive study on the electronic and structural properties of silicon nanowires (NWs) using parameter free computational simulations (DFT). We show that in Si NWs, surfaces whose atoms are connected to inner ones perpendicularly to the wires axes become electronically inactive at the band edges. However, when these bonds are oriented along the growth axes the surface states contribute significantly to the formation of the HOMO and LUMO, even for relatively large wires (diameters >30 °A). This is the dimension of the smallest experimental as-grown wires. These effects are caused by the fact that the electronic wave function is confined in the two directions perpendicular to the wires axes but it is not along it. Therefore, these conclusions can be extended to other types of semiconductor NWs, grown along different directions, with different facets and even surface reconstructions. These results can be used to guide actual implementations of NW based chemical and biological sensors, in a fashion that is now being followed by experimentalists. Following this work, we have investigated the electronic transport in these NWs with a NH2 radical adsorbed on different types of facets. These investigations not only confirm our previous conclusions but also indicate different effects associated with impurities adsorbed on distinct active surfaces. In some cases, the impurity level induces scattering centres that reduce the transport in an uniform way, whereas on other types of facets the decrease in the eletronic transport is sharp, suggesting the occurence of fano resonance.

ASSUNTO(S)

properties of the solids propriedades dos sólidos f´sica computacional structure of the solids computational physics estrutura dos sólidos

Documentos Relacionados