Nanoparticulas de ouro passivadas com tiois : caracterização estrutural e formação de supercristais auto-organizados

AUTOR(ES)
DATA DE PUBLICAÇÃO

1999

RESUMO

Nanometer-sized particles (1-100 nm) have attracted great interest since their high surface-to-volume ratio may lead to novel physical and chemical attributes. In particular, they can be used as building blocks to produce ideal nanostructured solids (cluster-assembled materials ? CAMs), which involves three steps: synthesis, characterization of individual properties and nanoparticles assembly. One of the most interesting classes of CAMs is the self-assembled supercrystals. The aim of this work was to carry out in somehow all these steps, and for that we have mainly dealt with thiol-passivated gold nanoparticles, their structural characterization and self-assembly in 2D or 3D arrangements. Structural modifications, such as the existence of non-crystallographic structures (Multiple Twined Particles (MTPs): decahedron and icosahedron) and inter-atomic distance contraction, have been studied as function of particle size (mean particle diameter from 2.0 ? 4.1 nm). The former subject was addressed by X-Ray Diffraction (XRD) and High Resolution Transmission Electron Microscopy (HRTEM) while the latter was studied by Extended X-Ray Absorption Fine Structure (EXAFS). Nanoparticle diffraction pattern contains superposed information on structure and particle size that requires a special fitting procedure, including a set of theoretical diffraction profiles (Debye-Scherrer formula) considering size dispersion and different structures (fcc, MTPs). The results indicate a high proportion of imperfect or more complex nanoparticle structures, fact that was confirmed by HRTEM imaging. Nevertheless, a clear structural tendency with particle size, expected theoretically, could be found in this system. Concerning nearest-neighbor distance determination, a slight contraction was less than 1%. The analysis also revealed a short metal-ligand bond, which suggests a rather strong surface interaction. We have inferred that the ligand interaction partially compensates the expected lattice contraction for free clusters. Our study indicates that the surface interaction may be still significant enough to generate structural modifications even in particles formed by 200 ? 1000 atoms (» 2-3 nm in diameter) and cannot be neglected when analysing particle properties in this size range. As for the self-assembled nanoparticle films composed by a few layers (1 to 3 layers) have shown an anomalous packing: expansion of the first layers lying on amorphous carbon substrate and an ordered second layer sitting on two-fold saddle points (regions of micrometer size); the third layer recovers the conventional close-packed staking. This anomalous packing could be explained by means of a simple theoretical model based on dispersional forces and it pointed out the importance of the substrate interaction on the particle arrangement

ASSUNTO(S)

espectroscopia de raio x nanoestrutura ouro coloidal raios x - difração

Documentos Relacionados