Light-induced reorientation in the purple membrane.

AUTOR(ES)
RESUMO

Reorientation of bacteriorhodopsin in the native purple membrane was studied by time-resolved linear dichroism spectroscopy (TRLD) over the millisecond time regime. The time responses observed in TRLD are distinctly different from the isotropic transient absorption (TA) at wavelengths in the range 550-590 nm, where the bacteriorhodopsin ground state absorbs. In contrast, the TA and TRLD responses have nearly identical time dependence at 410 and 690 nm, where the intermediates M and O, respectively, principally contribute. These results demonstrate ground-state bacteriorhodopsin reorientation triggered by the photocycle. The TRLD and TA data are analyzed to test models for reorientational motion. Rotational diffusion of ground-state bacteriorhodopsin cannot account for the details of the data. Rather, the results are shown to be consistent with a reversible reorientation of "spectator" (nonexcited) members of the bacteriorhodopsin trimer in the purple membrane in response to the photocycling member of the trimer. This response may be associated with cooperativity in the trimer.

Documentos Relacionados