Individual monitoring for external exposures: experimentation and simulation with Monte Carlo Method / Monitoração individual externa: experimentos e simulações com o método de Monte Carlo

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

In this work, we have evaluated the possibility of applying the Monte Carlo simulation technique in photon dosimetry of external individual monitoring. The GEANT4 toolkit was employed to simulate experiments with radiation monitors containing TLD-100 and CaF2:NaCl thermoluminescent detectors. As a first step, X ray spectra were generated impinging electrons on a tungsten target. Then, the produced photon beam was filtered in a beryllium window and additional filters to obtain the radiation with desired qualities. This procedure, used to simulate radiation fields produced by a X ray tube, was validated by comparing characteristics such as half value layer, which was also experimentally measured, mean photon energy and the spectral resolution of simulated spectra with that of reference spectra established by international standards. In the construction of thermoluminescent dosimeter, two approaches for improvements have been introduced. The first one was the inclusion of 6% of air in the composition of the CaF2:NaCl detector due to the difference between measured and calculated values of its density. Also, comparison between simulated and experimental results showed that the self-attenuation of emitted light in the readout process of the fluorite dosimeter must be taken into account. Then, in the second approach, the light attenuation coefficient of CaF2:NaCl compound estimated by simulation to be 2,20(25) mm-1 was introduced. Conversion coefficients cp from air kerma to personal dose equivalent were calculated using a slab water phantom with polimethyl-metacrilate (PMMA) walls, for reference narrow and wide X ray spectrum series [ISO 4037-1], and also for the wide spectra implanted and used in routine at Laboratório de Dosimetria. Simulations of backscattered radiations by PMMA slab water phantom and slab phantom of ICRU tissue-equivalent material produced very similar results. Therefore, the PMMA slab water phantom that can be easily constructed with low price can be considered a convenient practical alternative to substitute the tissue-equivalent slab. Conversion coefficients from air kerma to personal dose equivalent obtained were compared with published data. It was found that the quantity kerma in the medium commonly used for the evaluation of conversion coefficients at depths of the order or less than 0,07 mm does not provide good results for monoenergetic photon beams with energy between 200 to 1250 keV. In this range, it is necessary to consider the absorbed dose quantity. We conclude that the GEANT4 is a suitable toolkit not only to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of a dosimetry laboratory, but also to shed light upon all the experimental results obtained in external individual monitoring that are not always expected.

ASSUNTO(S)

geant4 dosimetry individual monitoring monitoração individual geant4 dosimetria

Documentos Relacionados