Homopolimerização e copolimerização via radical livre controlada por radicais nitroxidos / Nitroxide mediated radical homopolymerization and copolymerization

AUTOR(ES)
DATA DE PUBLICAÇÃO

2008

RESUMO

Controlled/living radical polymerization (CLRP) is one of the most rapidly developing areas of polymer science and engineering. The ability to prepare well-defined block and graft copolymers, gradient and periodic copolymers, stars, combs, polymer networks, end-functional polymers and many other materials by free-radical mechanisms is perhaps the main reason for the increased academic and industrial interest in CLRP. The industrial interest is triggered by the potential of CLRP in areas as coatings, adhesives, surfactants, dispersants, lubricants, gels, additives, thermoplastic elastomers as well as many electronic and biomedical applications. It is pointed out the industrial production of dispersants by nitroxide-mediated radical polymerization (NMRP), one case of CLRP. This study focus on the model and experimental investigation of TEMPO (2,2,6,6-tetramethyl piperidinyl-1-oxy) mediated free radical polymerization of styrene and styrene-co-divinylbenzene carried out in bulk under different experimental conditions. For homopolymerization case, a sensitivity analyses of how kinetic constants affect the model performance was carried out. Other reactions, not included in the previous model, were included and tested. The effect of different initial concentration of TEMPO was evaluated experimentally. It was shown that this condition affects significantly the results. For copolymerization case, experimental results were obtained for different temperature, and initial concentration of DVB and TEMPO. The gel prepared by NMRP showed remarkable differences from the one prepared in the conventional system, in regard to the monomer conversion profile. The gel point was delayed for the new process compared with conventional systems. The versatility of NMRP permits the synthesis of a number of novel architectures. In conclusion, the model proposed is expected to provide useful guidelines towards a better understanding of the NMRP process. Keywords: controlled/living polymerization, TEMPO, bulk polymerization, experimental, model

ASSUNTO(S)

polimeros polymers experimental data modelos matematicos polimerização polymerization modelling

Documentos Relacionados