Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases

AUTOR(ES)
FONTE

National Academy of Sciences

RESUMO

Glucuronoarabinoxylan, xyloglucan, and galactomannan are noncellulosic polysaccharides found in plant cell walls. All consist of β-linked glycan backbones substituted with sugar side chains. Although considerable progress has been made in characterizing the structure of these polysaccharides, little is known about the biosynthetic enzymes that produce them. Cellulose synthase-like (Csl) genes are hypothesized to encode Golgi-localized β-glycan synthases that polymerize the backbones of noncellulosic polysaccharides. To investigate this hypothesis, we used heterologous expression in Drosophila Schneider 2 (S2) cells to systematically analyze the functions of the gene products of a group of Csl genes from Arabidopsis and rice (Oryza sativa L.), including members from five Csl gene families (CslA, CslC, CslD, CslE, and CslH). Our analyses indicate that several members of the CslA gene family encode β-mannan synthases. Recombinant CslA proteins produce β-linked mannan polymers when supplied GDP-mannose. The same proteins can produce β-linked glucomannan heteropolymers when supplied both GDP-mannose and GDP-glucose. One CslA protein also produced β-linked glucan polymers when supplied GDP-glucose alone. Heterologous expression studies of additional candidate glycan synthases in insect cells or other systems may help identify other noncellulosic polysaccharide biosynthetic enzymes.

Documentos Relacionados