Expressão gênica e protéica de rodopsina em células pigmentares e mecanismos de sinalização intracelular da sua modulação por endotelinas / Modulation of rhodopsin expression and signaling mechanisms evoked by endothelins in in pigment cell lines

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which can regulate pigment migration and/or production in vertebrate pigment cells (chromatophores). In teleostean fish, ETs/SRTXs induce pigment migration. In human melanocytes, ETs promote melanogenesis and mitogenesis. ETs also regulate the transcription of several genes. These effects are mediated by different intracellular signaling pathways, such as the phospholipase C (PLC), protein kinase C (PKC) and the mitogen-activated protein kinase (MAPK) cascade. Rhodopsin is a photopigment responsible for photon detection, found in vertebrate rod cells. Rhodopsin gene transcription regulation in teleostean fish and mammals seems to occur through conserved elements. Chromatophores can respond directly to light, promoting the migration of pigment granules along the cells dedritic processes. These light-evoked responses are probably mediated by photoreceptive molecules expressed by these cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81 and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. The aim of this study was to determine whether 1) rhodopsin mRNA levels could be modulated by SRTX S6c in GEM-81 cells and ET-1 in B16 cells and the intracellular signaling mechanisms involved; 2) rhodopsin protein levels could also be modulated by SRTX S6c in GEM-81 and ET-1 in B16 cells. Using real time (quantitative) PCR, we demonstrated that SRTX S6c and ET-1 modulate rhodopsin mRNA levels in GEM-81 and B16, respectively, in a time and dose-dependent way. In GEM-81, this modulation involves the activation of a PKC and the MAPK cascade. In B16, it involves PLC, calcium as a second messenger, calmodulin, a calcium/calmodulin dependent kinase and PKC. The Western blotting assays demonstrated that in GEM-81 cells rhodopsin protein levels are not significantly altered by a 24-hour treatment with 10-9M SRTX S6c, suggesting the involvement of post-transcriptional mechanisms in the modulation of rhodopsin expression. In B16 cells, whose total protein was extracted 0 or 6 hours after the 24-hour treatment with 10-10M ET-1, rhodopsin protein levels were not significantly altered. When the cells total protein was extracted 3 hours after the 24-hour treatment with ET-1, a significant reduction in rhodopsin protein levels was observed. These results also suggest the involvement of post-transcriptional mechanisms in the modulation of rhodopsin expression in this cell line. These mechanisms could be somehow exacerbated in B16 cells whose protein was extracted 3 hours after the treatment.

ASSUNTO(S)

endotelinas rhodopsin b16 protein expression rodopsina gem-81 pigment cells endothelins expressão gênica b16 célula pigmentar expressão protéica gem-81 gene expression

Documentos Relacionados