Estudos de citogenética e de filogenia molecular em roedores da tribo Akodontini / Cytogenetics and molecular phylogenetics in rodents of the tribe Akodontini

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Traditionally comparative cytogenetic studies are based mainly on banding patterns. Nevertheless, when dealing with species with highly rearranged genomes, as in Akodon species, or with other highly divergent species, cytogenetic comparisons of banding patterns prove to be inadequate. Hence, comparative chromosome painting has become the method of choice for genome comparisons at the cytogenetic level, since it allows complete chromosome probes of a species to be hybridized in situ onto chromosomes of other species, detecting homologous genomic regions between them. In the present study, we have explored the highly rearranged complements of the Akodon species using reciprocal chromosome painting through species-specific chromosome probes obtained by chromosome sorting. The results revealed complete homology among the complements of Akodon sp. n. (ASP), 2n=10, A. cursor (ACU), 2n=15, A. montensis (AMO), 2n=24 and A. paranaensis (APA), 2n=44 and extensive chromosome rearrangements have been detected within the species with high precision. Robertsonian and tandem rearrangements, pericentric inversions and/or centromere repositioning, paracentric inversion, translocations, insertions and fragile sites were observed. The chromosome painting using the APA set of 21 autosomes plus X and Y exhibited eight syntenic segments that are shared with A. montensis, A. cursor and Akodon sp. n. plus five exclusive associations for A. cursor and six for Akodon sp. n. Chromosomes X, except for the heterochromatin region of ASP X, and even chromosome Y that often present no hybridization signal when hybridized between species of mammals, shared complete homology among the species. These data indicate that all those closely related species have experienced a recent intensive process of autosomic differentiation, in wich, there is still complete maintenance, except for chromosome X of Akodon sp. n., of the sex chromosomes homologies. Member of the tribe Akodontini, Deltamys Thomas 1917 is a poorly studied and rarely collected taxon. Based on morphological or genetic characters, some authors considered Deltamys as a full genus while others regarded it as subgenus or synonym of Akodon. The single described species, Deltamys kempi presents a basic karyotype with 2n=37 in males and 2n=38 in females, FN=38, and with sex determination system of the type X1X1X2X2: X1X2Y. A cytogenetic character that distinguishes Deltamys from Akodon is the presence of a small metacentric pair marker in Akodon. A karyotype with 2n=40 and FN=40; XX: XY was related to the genus Akodon, but as in Deltamys kempi, this complement does not present the small metacentric pair. Phylogenetic analyses of maximum parsimony and maximum likelihood based on sequences of the mitochondrial gene cytochrome b evidenced the monophyly of a clade grouping specimens of Akodon sp. 2n=40 and monophyly of a clade containing specimens of Deltamys kempi. Besides that, the analyses showed that Akodon sp. is the sistergroup of Deltamys kempi, thus more related to this genus than to other species of Akodon and suggesting the placement of specimens with 2n=40 Deltamys. The genus Deltamys is, thus, more diverse than previously thought, grouping two lineages: Deltamys kempi, 2n=37-38 ; X1X1X2X2: X1X2Y and Deltamys sp. 2n=40, XX: XY, with a marked genetic divergence of 12,1% between them. A karyotype with 2n=50, FN=48 has been described for specimens of Thaptomys Thomas, 1916 collected at Una, State of Bahia, Brazil, which are morphologically indistinguishable from Thaptomys nigrita with 2n=52, FN=52 found in other Brazilian localities. It has been hence proposed that this new karyotype with 2n=50 could belong to a distinct species, cryptic of Thaptomys nigrita, once chromosome rearrangements observed along with the geographic distance could represent a reproductive barrier between both forms. Molecular phylogenetic analyses using the cytochrome b sequences of eighteen karyotyped specimens of Thaptomys were performed attempting to establish the relationships among the individuals along the geographic distribution of the genus. Two major clades, Northeastern (A) with specimens with 2n=50 and Southeastern (B) with specimens with 2n=52, were reconstructed by maximum parsimony (MP) and maximum likelihood (ML). The intra-generic relationships recovered by phylogenetic analyses corroborated the distinct diploid numbers. The 2n=50 and 2n=52 karyotypes appeared as monophyletic separated by the basal cladogenesis of the genus, sister-group to each other. We present molecular phylogenetic and cytogenetic data on the monotypic fossorial rodent genus Blarinomys . Maximum parsimony and maximum likelihood based on cytochrome b gene sequences were performed for a sample of 11 individuals from nine localities of four states of Eastern Brazil. All topologies recovered two main lineages: a Northeastern (A) and a Southeastern clade. The Southeastern grouped two sister-clades B and C. Sequence divergence between individuals ranged from 4.7-8.0% between northeastern and southeastern clades, from 4.3-5.7% between clades B and C, from 6.1-8.0% between clades northeastern and B, and from 4.7-6.4% between clades northeastern and C. Within the clades, divergence varied from 0- 4.2% in the northeastern clade, was 0.7% in the clade B, and varied from 0.1- 1.3% in clade C. Variation among specimens from the same geographic regions ranged from 0-1.3%. Cytogenetic studies of five individuals revealed high karyotypic diversity with five distinct diploid numbers: 2n=52 (48A+2Bs,XY) from state of Bahia, and 2n=43 (37A+4Bs,XX), 2n=37 (34A+1B,XY), 2n=34 (32A,XX), and 2n=31 (27A+2Bs,XX) from state of São Paulo; and same number of autosomic arms (FN=50) excluding sex chromosomes and supernumeraries. Polymorphisms are due to Robertsonian rearrangements, in addition to the variation from none to four B chromosomes, which are heterogeneous regarding morphology, heterochromatin constitution and presence of interstitial telomeric signals (ITS). ITSs were also observed in the pericentromeric regions of some biarmed autosomic pairs of three specimens. Our results revealed a high unknown diversity for Blarinomys , showing two distinct lineages corresponding to regions of the Atlantic Rainforest, besides an extraordinary chromosomal polymorphism.

ASSUNTO(S)

citocromo b filogenia telomeric fish citogenética akodontini phylogenetics cytochrome b chromosome painting rearranjos cromossômicos cytogenetics chromosomal rearrangements pintura cromossômica akodontini fish telomérica

Documentos Relacionados