Estudo de materiais, estruturas de dispositivos e fenômenos de transporte em sistemas fotovoltaicos híbridos orgânico-inorgânico / Study of materials, device structures and transport phenomena in hybrid photovoltaic systems

AUTOR(ES)
DATA DE PUBLICAÇÃO

2010

RESUMO

Recently a fast development in organic and hybrid photovoltaic field has been observed. Such devices are fabricated by organic semiconductors within components of a heterojunction, in which bulk heterojunctions obtained via interpenetrating networks at the sub-20-nm length scale. It permits the effective collection of photogenerated charge carriers even with low exciton diffusion length and low charge carrier mobilities. Therefore, the study of material properties and the interface modification are essential to improve the power efficiency of such devices. The goal of this work is to investigate heterojunctions of titanium dioxide (TiO2) and poly(3-hexyl thiophene) (P3HT) as active layers in hybrid photovoltaic devices. Such heterojunctions are attractive since the metaloxide can be nanostructured previous the infiltration of the polymer within the nanocrystalline phase, leading on large interfacial area with the possibility to tune the interfacial properties keeping the acceptor/donor character of the two components. Titania films were obtained from colloidal dispersions of anatase nanoparticles, while P3HT from its solution in 1,2-dichlorobenzene. The electrodes were indium-tin oxide (ITO) and gold (Au). Electrical and spectroscopic characterization shows the photovoltaic parameters, as well as absorption and photoluminescence, depends on post-production treatments, evidencing that heating induces conformational changes in the polymeric phase, changing the oxide/polymer interface. The introduction of carboxyl groups at 3-hexyl ramifications in P3HT permits better contacts between oxide and polymer by chemisorption, being favored by thermal treatment. Furthermore, the infiltration of the polymer within the nanocrystalline TiO2 leads on enhanced stability of the devices, working even six months after their preparation. Finally, in this work is also proposed the utilization of a interface modifier based on zinc phtalocyanine complex, which has extended the device absorption window up to the red/ near infrared, increasing light harvesting, and a transport study related to photocarriers generation and recombination process was carried out by photoconductivity action spectra

ASSUNTO(S)

dióxido de titânio titanium dioxide conjugated polymers hybrid photovoltaic devices dispositivos fotovoltaicos híbridos polímeros conjugados

Documentos Relacionados