Enzymatic route selection for monoglyceride production using immobilized lipase on matrix obtained by sol-gel technique / Estratégias para desenvolvimento de um sistema operacional eficiente para a produção enzimática de monoglicerídeos

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

13/11/2009

RESUMO

The objective of this project was to select the best enzymatic route to produce monoglycerides using lipase immobilized on matrix obtained by sol-gel technique, aiming to contribute for a better utilization of the glycerol generated as by-product in the biodiesel synthesis. For this purpose two methodologies were analyzed: (1) direct esterification of the glycerol with fatty acids and (2) glycerolysis of the babassu oil, testing lipases from different sources as Candida antarctica B, Thermomyces lanuginosus, Candida rugosa, Pseudomonas fluorescens, Burkholderia cepacia, Penicillium camemberti and porcine pancreas immobilized on polysiloxane-polyvinyl alcohol particles (POS-PVA). The commercial immobilized lipase preparations as Lipozyme IM20, Novozym 435, Lipozyme RM IM and Lipozyme TL IM were also used. The experimental activities were, initially, addressed to establish appropriate conditions for the monoglycerides synthesis by direct esterification such as: reactants molar ratio, carbon chain size and insaturation degree of the fatty acids and lipase source. Reaction performance was found to be dependent on the glycerol/lauric acid molar ratio, requesting higher amount of glycerol to reach high reaction conversion. It was also verified that the molar conversion were strongly dependent on both carbon chain size and insaturation degree of the tested fatty acids. Experiments also allowed to select Candida antarctica B as catalyst to carry esterification reactions and the highest monolaurin formation occurred at 12 h reaction (24.15%). For the synthesis of monoglycerides by the glycerolysis route using babassu oil as a starting material, the best performance was attained by the lipase Burkholderia cepacia, revealing a formation of 10% (m/m) of monoglyceryde in 3h reaction. The comparative performance of the two routes for the monoglycerides synthesis demonstrated that the direct esterification was more efficient than the glycerolysis, being selected for additional optimization studies. A full factorial design 22 was proposed to verify the simultaneous influence of the variables: x1 (temperature in the range from 45 to 65ºC) and x2 (glycerol/ lauric acid molar ratio in the range from 3:1 to 5:1) in the monolaurin formation, using as catalyst lipase Candida antarctica B immobilized on POS-PVA. In agreement with the statistical analysis, the monolaurin formation was strongly influenced by the variable (x2) glycerol/ lauric acid molar ratio. The proposed mathematical model: y = 24.16 + 2.51 x1 + 4.43x2 - 2.74 x1x2 allowed to predict conditions that favored to attain high monolaurin yield. The reaction was maximized (31.35%) for substrate containing glycerol/lauric acid molar ratio of 5:1 and at incubation temperature of 45ºC. Those conditions were also appropriated for the monolaurin synthesis using other lipase sources, as the lipase of Penicillium camembertii that performance was found to be highly efficient for monoglycerides reaching more competitive values for monolaurin formation (51%) and can be turn out, therefore, an interesting alternative to be considered in futures works.

ASSUNTO(S)

esterificação esterification glicerólise glycerolysis lipase lipase monoglicerídeo monoglycerides óleo de babaçu babassu oil

Documentos Relacionados