Electrophoresis of bacteriophage T7 and T7 capsids in agarose gels.

AUTOR(ES)
RESUMO

Agarose gel electrophoresis of the following was performed in 0.05 M sodium phosphate-0.001 M MgCl2 (pH 7.4): (i) bacteriophage T7; (ii) a T7 precursor capsid (capsid I), isolated from T7-infected Escherichia coli, which has a thicker and less angular envelope than bacteriophage T7; (iii) a second capsid (capsid II), isolated from T7-infected E. coli, which has a bacteriophage-like envelope; and (iv) capsids (capsid IV) produced by temperature shock of bacteriophage T7. Bacteriophage T7 and all of the above capsids migrated towards the anode. In a 0.9% agarose gel, capsid I had an electrophoretic mobility of 9.1 +/- 0.4 X 10(-5) cm2/V.s; bacteriophage T7 migrated 0.31 +/- 0.02 times as fast as capsid I. The mobilities of different preparations of capsid II varied in such gels: the fastest-migrating capsid II preparation was 0.51 +/- 0.03 times as fast as capsid I and the slowest was 0.37 +/- 0.02 times as fast as capsid I. Capsid IV with and without the phage tail migrated 0.29 +/- 0.02 and 0.42 +/- 0.02 times as fast as capsid I. The results of the extrapolation of bacteriophage and capsid mobilities to 0% agarose concentration indicated that the above differences in mobility are caused by differences in average surface charge density. To increase the accuracy of mobility comparisons and to increase the number of samples that could be simultaneously analyzed, multisample horizontal slab gels were used. Treatment with the ionic detergent sodium dodecyl sulfate converted capsid I to a capsid that migated in the capsid II region during electrophoresis through agarose gels. In the electron microscope, most of the envelopes of these latter capsids resembled the capsid II envelope, but some envelope regions were thicker than the capsid II envelope.

Documentos Relacionados