Elaboração e caracterização de compósitos titânio/hidroxiapatita por metalurgia do pó para aplicações biomédicas

AUTOR(ES)
DATA DE PUBLICAÇÃO

2011

RESUMO

O titânio é um dos metais com propriedades mais adequadas para aplicações em medicina e odontologia, onde há a necessidade de suportar cargas mecânicas. Contudo, é um material bio-inerte, ou seja, a fixação do tecido ósseo sobre sua superfície ocorre por aderência biomecânica. Por outro lado, a hidroxiapatita (HAP) é um material bioativo com composição química e cristalográfica similar ao esqueleto humano e que apresenta baixa resistência mecânica. Nesse trabalho optou-se por elaborar compósitos de titânio/hidroxiapatita pelo método de metalurgia do pó com o objetivo de produzir um compósito bioativo para aplicações biomédicas onde há esforços mecânicos. Foram elaborados compósitos à base de titânio com 5%, 7,3% e 10% em volume de hidroxiapatita. O pó de titânio (99,53% puro) foi adquirido da TiBrasil (granulometria <150 m) e o pó de hidroxiapatita foi sintetizado no Laboratório de Biomateriais da UDESC com tamanho de partícula inferior a 100 nm. As misturas foram realizadas com álcool e esferas de zircônia em moinho atritor de alta energia durante 5 horas, seguidas de secagem em evaporador rotativo. Em seguida foram compactadas a frio a 600 MPa e sinterizadas em atmosfera de argônio a 1200 oC por 2 horas. Os materiais foram caracterizados por microscopia eletrônica de varredura, difração de raios-X e calorimetria diferencial. As fases cristalinas do compósito produzido foram α-Ti, CaTiO3, Ca3(PO4)2 e fase(s) TixPy. As análises revelaram que as partículas de titânio foram cobertas por uma camada compacta de fases TixPy e CaTiO3, resultantes da decomposição da HAP a aproximadamente 1025oC. Primeiramente a HAP se decompõe em CaTiO3 e β-Ca3(PO4)2. Em seguida a decomposição do β-Ca3(PO4)2 resultou no crescimento da camada de CaTiO3 e na nucleação e crescimento de fase(s) TixPy. Devido à presença de aglomerados de HAP nos compósitos, o tempo e a temperatura de sinterização não foram suficientes para converter todo o β-Ca3(PO4)2 desses aglomerados em CaTiO3 e TixPy. O β-Ca3(PO4)2 que não foi convertido se transformou em α-Ca3(PO4)2 a 1200oC. Os ensaios de compressão revelaram que os compósitos fabricados com HAP nanométrica apresentam maior resistência à ruptura do que aqueles fabricados com HAP micrométrica porque os compósitos com HAP nanométrica ficaram mais homogêneos, ou seja, apresentaram maior dispersão de partículas de HAP.

ASSUNTO(S)

engenharia de materiais e metalurgica titânio hidroxiapatita compósito metalurgia do pó

Documentos Relacionados