EFEITO DO MERCÚRIO NO ESTRESSE OXIDATIVO, NA ATIVIDADE DA DELTA-ALA-D E NO CRESCIMENTO DE PLÂNTULAS DE PEPINO (Cucumis sativus L.) / MERCURY EFFECT IN THE OXIDATIVE STRESS, IN THE DELTA-ALA-D ACTIVITY AND ON GROWNHT OF CUCUMBER SEEDLINGS (Cucumis sativus L.)

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

In this study, the effects of mercury (HgCl2) in cucumber seedlings (Cucumis sativus L.) were investigated through the analysis of the physiological and biochemical parameters. The biochemical parameters analyzed were: the antioxidant enzyme activities (catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)), and the non-enzymatic antioxidant levels (ascorbic acid (ASA), carotenoids, and non-protein thiol content (SH)). The damage at the membrane lipids (lipid peroxidation, electrolytic leakage percentage (ELP)), the chlorophyll content, and protein oxidation were determined. The hydrogen peroxide levels (H2O2) and the δ-aminolevulinic acid dehydratase (δ-ALAD) activity were also determined. The growth of cucumber seedlings was evaluated based on the dry and fresh matter, and on the root and shoot length. Cucumber seedlings were exposed to 0 to 500 μM of HgCl2 during 10 and 15 days. The results showed that Hg was absorbed by the growing seedlings, and its content was greater in the roots than in the shoot. Moreover, a reduction in the root and shoot length, at both 10 and 15 days, which was dependent on time and concentration, was observed at all concentrations tested. At the concentration of 50 μM HgCl2 the root fresh weight of 15-day-old seedlings increased, however, it reduced at the other concentrations. For 10-day-old seedlings, a reduction in root and shoot fresh biomass was observed. No reduction in shoot fresh biomass was observed at the concentration of 50 μM HgCl2, at 15 days. Regarding dry weight, there was an increase at 500 μM, both at 10 and 15 days, however, at the concentration of 250 μM HgCl2, there was an increase at 15 days. Moreover, a significant reduction in the dry weight of shoot in all tested concentrations was observed. The results showed higher levels of lipid peroxides, as well as a protein oxidation increase, and chlorophyll content reduction when seedlings were exposed to 250 and 500 μM HgCl2. In relation to the antioxidant enzymes, there was an increase in the CAT activity at 10 days of exposure to HgCl2, at 50 μM. However, in the higher concentration (500 μM) of mercury, there was a marked inhibition. Besides, at both 10 and 15 days, an inhibition of APX enzyme in the mercury higher concentrations (250 and 500 μM) was observed. The SOD, another enzyme of the antioxidant system, showed an increased activity in the concentration below 50 μM HgCl2, and a reduced activity in the higher concentrations. Regarding ELP, alterations only in the higher concentrations (500 μM HgCl2) and at 15 days of exposure to metal were observed. Furthermore, seedlings with 10 days of exposure to HgCl2 had their reduced H2O2 levels at 50 μM HgCl2, but the H2O2 increased at the higher concentration. In relation to non-enzymatic antioxidants, increasing SH levels at all the concentrations at 10-days of exposure were observed. ASA levels also increased at all tested concentrations at 10 and 15 days of exposure at metal. Yet, the carotenoids levels increased at low concentrations and decreased at high concentrations, both at 10 and 15 days of exposure to Hg. δ-ALA-D activity increased at 50 μM HgCl2 at 15 days, and was inhibited at higher concentrations. Therefore, the results obtained from the biochemical and physiological analyses suggest that mercury induces oxidative stress in cucumber seedlings, resulting in injuries in the tissues, which leads to a reduction in the growth, and loss of dry matter of the seedlings.

ASSUNTO(S)

cucumis sativus reactive oxygen species. bioquimica antioxidantes antioxidants cucumis sativus espécies reativas de oxigênio

Documentos Relacionados