Duplex Real-Time PCR Assay for Rapid Detection of Ampicillin-Resistant Enterococcus faecium

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the d-Ala-d-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.

Documentos Relacionados