Dual-Probe Assay for Rapid Detection of Drug-Resistant Mycobacterium tuberculosis by Real-Time PCR

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Mutations in particular nucleotides of genes coding for drug targets or drug-converting enzymes lead to drug resistance in Mycobacterium tuberculosis. For rapid detection of drug-resistant M. tuberculosis in clinical specimens, a simple and applicable method is needed. Eight TaqMan minor groove binder (MGB) probes, which discriminate one-base mismatches, were designed (dual-probe assay with four reaction tubes). The target of six MGB probes was the rpoB gene, which is involved in rifampin resistance; five probes were designed to detect for mutation sites within an 81-bp hot spot of the rpoB gene, and one probe was designed as a tuberculosis (TB) control outside the rpoB gene hot-spot. We also designed probes to examine codon 315 of katG and codon 306 of embB for mutations associated with resistance to isoniazid and ethambutol, respectively. Our system was M. tuberculosis complex specific, because neither nontuberculous mycobacteria nor bacteria other than mycobacteria reacted with the system. Detection limits in direct and preamplified analyses were 250 and 10 fg of genomic DNA, respectively. The system could detect mutations of the rpoB, katG, and embB genes in DNAs extracted from 45 laboratory strains and from sputum samples of 27 patients with pulmonary TB. This system was much faster (3 h from DNA preparation) than conventional drug susceptibility testing (3 weeks). Results from the dual-MGB-probe assay were consistent with DNA sequencing. Because the dual-probe assay system is simple, rapid, and accurate, it can be applied to detect drug-resistant M. tuberculosis in clinical laboratories.

Documentos Relacionados