Dimensionality reduction using mean conditional entropy applied for bioinformatics and image processing problems / "Redução de dimensionalidade utilizando entropia condicional média aplicada a problemas de bioinformática e de processamento de imagens"

AUTOR(ES)
DATA DE PUBLICAÇÃO

2004

RESUMO

Dimensionality reduction is a very important pattern recognition problem with many applications. Among the dimensionality reduction techniques, feature selection was the main focus of this research. In general, most dimensionality reduction methods that may be found in the literature privilegiate cases in which the data is linearly separable and with only two distinct classes. Aiming at covering more generic cases, this work proposes a criterion function, based on the statistical theory principles of entropy and mutual information, to be embedded in the existing feature selection algorithms. This approach allows to classify the data, linearly separable or not, in two or more classes, taking into account a small feature subspace. Results with synthetic and real data were obtained corroborating the utility of this technique. This work addressed two bioinformatics problems. The first is about distinguishing two biological fenomena through the selection of an appropriate subset of genes. We studied a strong genes selection technique using support vector machines (SVM) which has been applied to SAGE data of human genome. Most of the strong genes found by this technique to distinguish brain tumors (glioblastoma and astrocytoma) were validated by the proposed methodology presented in this work. The second problem covered in this work is the identification of genetic network regulation, using our proposed methodology, from data produced by work of DeRisi et al about microarray of the Plasmodium falciparum genome, malaria agent, during 48 hours of its life cycle. This text presents evidences that using mean conditional entropy to estimate a probabilistic genetic network (PGN) may be very promising. In the image processing context, it is shown that this technique can be applied to obtain minimal W-operators that perform image filtering and texture recognition.

ASSUNTO(S)

redes gênicas probabilísticas w-operadores w-operators seleção de características conditional entropy redução de dimensionalidade entropia condicional probabilistic genetic networks feature selection dimensionality reduction

Documentos Relacionados