Deoxypyrimidine nucleoside metabolism in varicella-zoster virus-infected cells.

AUTOR(ES)
RESUMO

Noninfected and varicella-zoster virus (VZV)-infected human foreskin fibroblasts were examined for thymidine kinase activity. The specific activity of VZV-infected cell extracts was approximately 7.5-fold greater than that of mock-infected cells and 3-fold greater than that of actively growing cells. The pH optimum of VZV-infected cell thymidine kinase activity was found to be 8.0, whereas thymidine kinase activity in noninfected cells exhibited a sharp pH optimum at 7.4. Electrophoretic analysis of cellular enzymes involved in pyrimidine nucleoside phosphorylation revealed at least three enzymes distinguishable by electrophoretic mobility and substrates used. These enzymes were presumed to be thymidine kinase, deoxycytidine kinase, and uridine kinase. The relative mobilities of these enzymes on 5% polyacrylamide gels were 0.18, 0.91, and 0.54, respectively. In VZV-infected cells, a single band of activity catalyzing the phosphorylation of thymidine, deoxyuridine, deoxycytidine, and cytidine was observed with a relative mobility of 0.48. Cellular pyrimidine-phosphorylating enzymes were not detected in VZV-infected cells. The molecular weight of the VZV-induced enzyme was determined to be 72,000 +/- 7%.

Documentos Relacionados