Bacteriophage lambda as a cloning vector.

AUTOR(ES)
RESUMO

Extensive research has been directed toward the development of multipurpose lambda vectors for cloning ever since the potential of using coliphage lambda as a cloning vector was recognized in the late 1970s. An understanding of the intrinsic molecular organization and of the genetic events which determine lysis or lysogeny in lambda has allowed investigators to modify it to suit the specific requirements of gene manipulations. Unwanted restriction sites have been altered and arranged together into suitable polylinkers. The development of a highly efficient in vitro packaging system has permitted the introduction of chimeric molecules into hosts. Biological containment of recombinants has been achieved by introducing amber mutations into the lambda genome and by using specific amber suppressor hosts. Taking advantage of the limited range of genome size (78 to 105% of the wild-type size) for its efficient packaging, an array of vectors has been devised to accommodate inserts of a wide size range, the limit being 24 kbp in Charon 40. The central dispensable fragment of the lambda genome can be replaced by a fragment of heterologous DNA, leading to the construction of replacement vectors such as Charon and EMBL. Alternatively, small DNA fragments can be inserted without removing the dispensable region of the lambda genome, as in lambda gt10 and lambda gt11 vectors. In addition, the introduction of many other desirable properties, such as NotI and SfiI sites in polylinkers (e.g., lambda gt22), T7 and T3 promoters for the in vitro transcription (e.g., lambda DASH), and the mechanism for in vivo excision of the intact insert (e.g., lambda ZAP), has facilitated both cloning and subsequent analysis. In most cases, the recombinants can be differentiated from the parental phages by their altered phenotype. Libraries constructed in lambda vectors are screened easily with antibody or nucleic acid probes since several thousand clones can be plated on a single petri dish. Besides the availability of a wide range of lambda vectors, many related techniques such as rapid isolation of lambda DNA, a high efficiency of commercially available in vitro packaging extracts, and in vitro amplification of DNA via the polymerase chain reaction have collectively contributed to lambda's becoming one of the most powerful and popular tools for molecular cloning.

Documentos Relacionados