Avaliação do potencial erosivo do suco de laranja modificado pela adição de caseína e ovalbumina / Evaluation of the erosive potential of an orange juice modified by the addition of casein and ovalbumin [dissertation

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

28/06/2011

RESUMO

The erosive potential of a modified orange juice by addition of casein, ovalbumin and its combination, on human enamel and root dentin was evaluated in this in vitro study. Two dietary proteins, 0.2 g/l casein (CAS), 2.0 g/l ovalbumin (OVA) and their combination (CAS + OVA) were added to a commercially available orange juice. The juice with no additives was used as negative control (C-) and a commercially available calcium-modified juice as positive control (C+). The erosive potential of the experimental juices was initially compared by the pH-Stat method, and then, by an in vitro erosion-remineralization cycling model. 55 enamel and 55 root dentin specimens (4 x 4 x 2mm) were obtained and embedded in acrylic resin blocks. These blocks were ground flat with abrasive discs and polished with felt paper and diamond paste. The polished surfaces were covered with an adhesive tape, leaving a central area of 4 x 1mm exposed. The specimens were randomly allocated within the 5 experimental groups (n=11), and immersed in the respective juices for 5 min, 6x/day, for 5 days. Between the immersions and overnight they were stored in artificial saliva. After the cycling, the enamel specimens were analyzed by surface Knoop microhardness (50g, 15s) and optical profilometry, while dentin specimens were analyzed only by profilometry. The mean volume of HCl obtained in triplicate were calculated for the pH-Stat method. The data obtained for profilometry and microhardness were statistically analyzed using ANOVA, one-way, followed by Tukeys test considering a significance level of 5%. The mean volume of HCl (ml) obtained for the pH-stat method were: C+ 0,46 (± 0,03); CAS 1,22 (± 0,06); OVA 1,10 (± 0,10); CAS+OVA 1,08 (± 0,01) e C- 1,07 (± 0,02). For enamel, the surface loss (m) was: C+ 0,09 (± 0,20); CAS -0,40 (± 0,32); OVA -0,44 (± 0,26); CAS+OVA -0,39 (± 0,25) e C- -1,04 (± 0,36). Regarding microhardness, the Knoop hardness values were: C+ 312,68 (± 20,45); CAS 121,99 (± 10,70); OVA 108,87 (± 11,16); CAS+OVA 102,57 (± 11,89) e C- 101,94 (± 8,56). For dentin, the surface loss (m) was: C+ - 0,82 (± 0,28); CAS -7,26 (± 0,65); OVA -6,74 (± 1,18); CAS+OVA -7,16 (± 0,75) and C- -7,51 (± 1,26). It was concluded that protein-modified orange juices presented reduced erosive potential on enamel. Casein showed a better subsurface demineralization protection, and its combination with ovalbumin did not lead to additional benefits. For dentin, any reduction on the erosive potential was observed for protein-modified orange juices.

ASSUNTO(S)

dentin dentina erosão dentária esmalte dentário ovalbumin ovalbumina tooth erosion dental enamel

Documentos Relacionados