APLICAÇÃO DE MATERIAIS COM MAGNETOSTRICÇÃO GIGANTE EM SENSORES DE DESLOCAMENTO SEM CONTACTO / GIANT MAGNETOSTRICTIVE MATERIALS APPLIED TO CONTACTLESS DISPLACEMENT SENSORS

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

Magnetostriction is a property of ferromagnetic materials to deform in the presence of a magnetic field. Magnetostriction is an inherent property of magnetic materials, which is unchangeable with time. Materials exhibiting strains in the order of 10-3 are known as giant magnetostrictive materials (GMM).In this dissertation we study the application of these materials in displacement sensors where there is not contact between the cursor element (magnet) and sensor element (GMM). Its principle of operation consists of applying a magnetic field gradient to a GMM located at a fixed position. The magnetic field gradient is produced by a magnet attached to the component or structure in which the displacement will be measured.The variation on the magnetic field in the GMM position originated from the displacement of the magnet, results in a strain in the GMM that can be detected with a Strain Gauge or Bragg Grating extensometers. In this work is presented the characterization of the strain on GMM cuboids against a constant magnetic field and the analysis of its behavior for different geometries. Effects of pressure, polarization with a second magnet, and different gradients of magnetic field are also studied. It is observed a local behavior for strains when it is measured in different regions of GMM cuboid. The results obtained allow us to measure displacements of about few micra when the sensor is at a distance of 10 mm from the cursor element.

ASSUNTO(S)

displacement sensor magnetostrictive material rede de bragg material magnetostrictivo bragg grating sensor de deslocamento strain gauge strain gauge

Documentos Relacionados