Antioxidant activity evaluation of dried herbal extracts: an electroanalytical approach

AUTOR(ES)
FONTE

Rev. bras. farmacogn.

DATA DE PUBLICAÇÃO

2018-06

RESUMO

ABSTRACT The prevention of chronic and degenerative diseases, is a health concern deeply associated with oxidative stress. Such progressive phenomena can be avoided through exogenous antioxidant intake, which set up a reductant cascade, mopping up damaging free radicals. Medicinal herbs are commonly associated with high antioxidant potential, and hence their health benefits. The commerce of dried herbal extracts movements a big portion of developing countries economy. The determination of medicinal herbs the antioxidant activity capacity is of utmost importance. The assessment of antioxidant activity in phytotherapics is mostly achieved by spectrophotometric assays, however colored substances can produce interferences that do not occur in electroanalytical methods. Therefore, the aim of this paper is to compare spectrophotometric and voltammetric techniques to evaluate antioxidant activity in herbal drugs such as: Ginkgo biloba L., Camellia sinensis (L.) Kuntze, Theaceae; Hypericum perforatum L., Hypericaceae; Aesculus hippocastanum L., Sapindaceae; Rosmarinus officinalis L., Lamiaceae; Morinda citrifolia L., Rubiaceae; Centella asiatica (L.) Urb., Apiaceae; Trifolium pratense L., Fabaceae; Crataegus oxyacantha L., Rosaceae; and Vaccinium macrocarpon Aiton, Ericaceae. The spectrophotometric methods employed were DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the Folin-Ciocalteu assays. The electroanalytical method used was voltammetry and it was developed a phenoloxidase based biosensor. The redox behavior observed for each herbal sample resulted in distinguishable voltammetric profiles. The highest electrochemical indexes were found to G. biloba and H. perforatum, corroborating to traditional spectrophotometric methods. Thus, the electroanalysis of herbal drugs, may be a promising tool for antioxidant potential assessment.

Documentos Relacionados