Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.

AUTOR(ES)
DATA DE PUBLICAÇÃO

2001

RESUMO

A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.

ASSUNTO(S)

dinâmica dos fluidos computacional equações de navier-stokes equações médias de reynolds upwind scheme computational fluid dynamics esquema de convecção k-epsilon turbulence model simulação numérica finite difference método upwind escoamento com superfície livre diferença finita reynolds averaged equations numerical simulation convection scheme modelo k-epsilon de turbulência free surface flow navier-stokes equations

Documentos Relacionados