Alterações metabólicas cerebrais associadas aos fatores de risco cardiovascular: um estudo de tomografia por emissão de pósitron (PET) / Abnormalities on brain metabolism associated to cardiovascular risk factors: a positron emission tomography (PET) study

AUTOR(ES)
FONTE

IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia

DATA DE PUBLICAÇÃO

05/12/2011

RESUMO

INTRODUCTION: Cardiovascular risk factors (CVRF) are known to affect cerebral blood flow, possibly contributing to cognitive decline and to the emergence of Alzheimers disease (AD), the commonest form of dementia. Positron emission tomography (PET) with 18-fluoro-2-deoxyglucose (18FFDG) has been widely used to demonstrate specific patterns of reduced brain glucose metabolism in AD subjects and in non-demented individuals carriers of the apolipoprotein e4 allele (APOE e4), the major genetic risk factor for DA. However, PET studies investigating the impact of CVRF on cerebral metabolism have been scarce to date. OBJECTIVE: To examine whether different levels of CVRF would be associated with cerebral metabolic rate of glucose (CMRgl) reductions, involving brain regions affected in early stages of DA (precuneus and posterior cingulate gyrus, lateral temporalparietal neocortices and hippocampal region). METHODS: We assessed 59 cognitively preserved individuals (66-75 years), subdivided into three groups according to their Framingham Coronary Heart Disease Risk (FCHDR) score (high-risk, medium-risk, and low-risk), both with magnetic resonance imaging (MRI) and FDG-PET scans. PET data were corrected for partial volume effects to avoid confounding effects due to regional brain atrophy. We performed an overall analysis of covariance (ANCOVA) to investigate CMRgl reductions in association with the three groups, two-group comparisons of CMRgl differences by t-tests, and voxelwise linear correlation indices between CMRgl values and FCHDR scores. All analysis included the presence or absence of the APOE 4 allele as a confounding covariate of interest. RESULTS: The ANCOVA investigation of CMRgl differences across the three groups showed significant CMRgl differences only in the right parahippocampal gyrus (p=0.032). In the two-group comparisons, significant CMRgl reductions were detected in the high-risk group compared to the lowrisk group in the left precuneus (p=0.008); and the left posterior cingulate gyrus (p=0.007). Unexpected foci of CMRgl reductions in the low-risk compared to the high-risk group in the parahippocampal gyrus were detected, both on the right (p=0.001) and left (p=0.045) hemispheres. There was also a significant positive linear correlation between CMRgl values and FCHDR scores in the parahippocampal gyrus both for the right (p=0.007) and left (p=0.025) sides. CONCLUSION: After controlling for the presence of the APOE 4 allele, our findings of CVRF-related regional brain hypofunction retained statistical significance in the precuneus and posterior cingulate gyrus, the two brain regions where functional impairments are most consistently detected in incipient stages of AD. This suggests that findings of brain hypometabolism similar to those seen in AD subjects can be seen in association with the severity of CVRF in samples of cognitively preserved individuals. One possible explanation for the relative hypermetabolism in the parahippocampal gyrus in high CVRF individuals would be a bias in the sample selection. It is possible that we have excluded subjects with severest levels of cardiovascular risk who would have displayed patterns of reduced CMRgl in the parahippocampal gyrus, forcing the selection of individuals who are at high cardiovascular risk but are capable of displaying compensatory mechanisms to maintain adequate metabolic functioning in temporolimbic regions vulnerable to microvascular changes

ASSUNTO(S)

aging alzheimer disease brain mapping cardiovascular diseases doença de alzheimer doenças cardiovasculares envelhecimento fatores de risco fluordesoxiglucose f18 fluorodeoxyglucose f18 genetic predisposition to disease mapeamento encefálico positron-emission tomography predisposição genética para doença risk factors tomografia por emissão de pósitrons

Documentos Relacionados