Acetylcholine-receptor-mediated ion flux in electroplax membrane microsacs (vesicles): Change in mechanism produced by asymmetrical distribution of sodium and potassium ions

AUTOR(ES)
RESUMO

The kinetics of acetylcholine-receptor-mediated efflux of inorganic ions from electroplax microsacs of Electrophorus electricus in the presence of varying alkali metal ion concentrations on both sides of the membrane have been investigated. The efflux, a monophasic process when the ion distribution is symmetrical (the same concentrations and types of ions on both sides of the membrane), becomes a biphasic process, consisting of a very rapid initial release of ions followed by a slower first-order process, under conditions that resemble the physiological state of the neural membrane (potassium ions inside the microsacs and sodium ions on the outside). The initial phase of the efflux discriminates between calcium and sodium ions and is inhibited by potassium ions in the external solution. The rate constant associated with this phase is at least 40 times larger than the rate constant associated with the slower efflux. Both phases depend on the concentration of acetylcholine or carbamoylcholine, and are inhibited by receptor inhibitors (d-tubocurarine and α-bungarotoxin).

Documentos Relacionados