Sodium-calcium ion exchange in cardiac membrane vesicles.

AUTOR(ES)
RESUMO

Membrane vesicles isolated from rabbit ventricular tissue rapidly accumulated Ca2+ when an outwardly directed Na+ gradient was formed across the vesicle membrane. Vesicles loaded internally with K+ showed only 10% of the Ca2+ uptake activity observed with Na+-loaded vesicles. Dissipation of the Na+ gradient with the monovalent cation exchange ionophores nigericin or narasin caused a rapid decline in Ca2+ uptake activity. The Ca2+-ionophore A23187 inhibited Ca2+ uptake by Na+-loaded vesicles and enhanced the rate of Ca2+ loss from the vesicles after uptake. Efflux of preaccumulated Ca2+ from the vesicles was stimulated 30-fold by the presence of 50 mM Na+ in the external medium. Na+-dependent uptake and efflux of Ca2+ were both inhibited by La3+. The results indicate that cardiac membrane vesicles exhibit Na+-Ca2+ exchange activity. Fractionation of the vesicles by density gradient centrifugation revealed a close correspondence between Na+-Ca2+ exchange activity and specific ouabain-binding activity among the various fractions. This relationship suggests that the observed Na+-Ca2+ exchange activity derives from the sarcolemmal membranes within the vesicle preparation.

Documentos Relacionados