YY1 represses rat serum amyloid A1 gene transcription and is antagonized by NF-kappa B during acute-phase response.

AUTOR(ES)
RESUMO

Serum amyloid A (SAA), one of the major acute-phase proteins, increases several hundredfold in concentration in plasma following acute inflammation, primarily as a result of a 200-fold increase in its transcriptional rate. Functional analysis of the rat SAA1 promoter has identified a 65-bp cytokine response unit (CRU; positions -135 to -71) that could confer cytokine responsiveness on a heterologous promoter. Within this CRU, two cis-regulatory elements, corresponding to NF-kappa B- and C/EBP-binding sites, were found to be functionally important and exerted synergistic effects on induced SAA1 expression. In this report, we show that a third transcription factor interacts with the CRU through a region located between the NF-kappa B- and C/EBP-binding sites. On the basis of its gel mobility shift patterns, ubiquitous binding activity, sequence specificity of DNA binding, zinc-dependent binding activity, and gel mobility supershift by specific antibodies, we concluded that this factor is identical to YY1. Methylation interference studies revealed that YY1 binding sequences overlapped with those of NF-kappa B, and gel mobility studies showed that NF-kappa binding to the CRU was effectively inhibited by YY1. Consistent with its presumed antagonistic role to NF-kappa B, YY1 exerted a negative effect on SAA1 expression, whereas disruption of its binding in the promoter elevated basal and cytokine-induced activities. Furthermore, overexpression of YY1 trans-repressed SAA1 promoter activity. Thus, our results demonstrate that SAA1 expression is tightly regulated by an on-off switch of activators and repressors, presumably to ensure that it is expressed only under appropriate physiological conditions.

Documentos Relacionados