YopD and LcrH Regulate Expression of Yersinia enterocolitica YopQ by a Posttranscriptional Mechanism and Bind to yopQ RNA

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Pathogenic yersiniae secrete 14 Yop proteins via the type III pathway. Synthesis of YopQ occurs when the type III machinery is activated by a low-calcium signal, but not when the calcium concentration is above 100 μM. To characterize the mechanism that regulates the expression of yopQ, mutants that permit synthesis of YopQ in the presence of calcium were isolated. Yersiniae bearing deletion mutations in yopN, tyeA, sycN, or yscB synthesized and secreted YopQ in both the presence and the absence of calcium. In contrast, yersiniae with a deletion in yopD or lcrH synthesized YopQ in the presence of calcium but did not secrete the polypeptide. These variants displayed no defect in YopQ secretion under low-calcium conditions, revealing that yopD and lcrH are required for the regulation of yopQ expression. Experiments with transcriptional and translational fusions to the npt reporter gene suggest that yopD and lcrH regulate yopQ expression at a posttranscriptional step. YopD and LcrH form a complex in the bacterial cytosol and bind yopQ mRNA. Models that can account for posttranscriptional regulatory mechanisms of yop expression are discussed.

Documentos Relacionados