Whole-Cell versus Total RNA Extraction for Analysis of Microbial Community Structure with 16S rRNA-Targeted Oligonucleotide Probes in Salt Marsh Sediments

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

rRNA-targeted oligonucleotide probes have become powerful tools for describing microbial communities, but their use in sediments remains difficult. Here we describe a simple technique involving homogenization, detergents, and dispersants that allows the quantitative extraction of cells from formalin-preserved salt marsh sediments. Resulting cell extracts are amenable to membrane blotting and hybridization protocols. Using this procedure, the efficiency of cell extraction was high (95.7% ± 3.7% [mean ± standard deviation]) relative to direct DAPI (4′,6′-diamidino-2-phenylindole) epifluorescence cell counts for a variety of salt marsh sediments. To test the hypothesis that cells were extracted without phylogenetic bias, the relative abundance (depth distribution) of five major divisions of the gram-negative mesophilic sulfate-reducing delta proteobacteria were determined in sediments maintained in a tidal mesocosm system. A suite of six 16S rRNA-targeted oligonucleotide probes were utilized. The apparent structure of sulfate-reducing bacteria communities determined from whole-cell and RNA extracts were consistent with each other (r2 = 0.60), indicating that the whole-cell extraction and RNA extraction hybridization approaches for describing sediment microbial communities are equally robust. However, the variability associated with both methods was high and appeared to be a result of the natural heterogeneity of sediment microbial communities and methodological artifacts. The relative distribution of sulfate-reducing bacteria was similar to that observed in natural marsh systems, providing preliminary evidence that the mesocosm systems accurately simulate native marsh systems.

Documentos Relacionados