Voltage-sensitive calcium channels regulate guanosine 3',5'-cyclic monophosphate levels in neuroblastoma cells.

AUTOR(ES)
RESUMO

Veratridine or high potassium concentration increased guanosine 3',5'-cyclic monophosphate (cGMP) levels in neuroblastoma cells of clone N1E-115 without affecting levels of adenosine 3',5'-cyclic monophosphate (cAMP). The increases in cGMP appear to be a direct result of the depolarizing action of these agents and not due to the action of substances released from the cells upon depolarization. The increase in cGMP produced by depolarization was dependent upon extracellular calcium and could be prevented by the calcium channel blockers D600 and cobalt. Carbachol, acting on muscarinic acetylcholine receptors, also caused a calcium-dependent increase in cGMP in these cells. The carbachol and potassium effects were additive from 5 to 100 mM potassium and from 1 to 3 mM calcium. The carbachol response was nearly as sensitive as the potassium response to inhibition by D600 but was much less sensitive to inhibition by cobalt. The results suggest that depolarization increases cGMP levels in these cells by opening voltage-sensitive calcium channels and that activation of muscarinic receptors opens separate, voltage-insensitive calcium channels.

Documentos Relacionados