Vibrational equilibration in absorption difference spectra of chlorophyll a.

AUTOR(ES)
RESUMO

We describe Franck-Condon simulations of vibrational cooling effects on absorption difference spectra in chlorophyll a (Chl a). The relative contributions of vibrational equilibration in the electronic ground and excited states depend on the pump and probe wavelengths. For Franck-Condon-active vibrational modes exhibiting small Huang-Rhys factors (S < 0.1, characteristic in Chl a pigments), vibrational thermalization causes essentially no spectral changes when the origin band is excited. Significant spectral evolution does occur for S < 0.1 when the 0-1 and 1.0 (hot) vibronic bands are excited. However, vibrational equilibration in these cases causes no spectral shifting in the empirical photobleaching/stimulated emission band maximum. This result bears on the interpretation of time-resolved absorption difference spectra of Chl a-containing antennae such as the Chl a/b light-harvesting peripheral antenna of photosystem II.

Documentos Relacionados