Vascular Function in Grape Berries across Development and Its Relevance to Apparent Hydraulic Isolation1[C]

AUTOR(ES)
FONTE

American Society of Plant Biologists

RESUMO

During the latter stages of development in fleshy fruit, water flow through the xylem declines markedly and the requirements of transpiration and further expansion are fulfilled primarily by the phloem. We evaluated the hypothesis that cessation of water transport through the xylem results from disruption or occlusion of pedicel and berry xylem conduits (hydraulic isolation). Xylem hydraulic resistance (Rh) was measured in developing fruit of grape (Vitis vinifera ‘Chardonnay’) 20 to 100 d after anthesis (DAA) and compared with observations of xylem anatomy by light and cryo-scanning electron microscopy and expression of six plasma membrane intrinsic protein (PIP) aquaporin genes (VvPIP1;1, VvPIP1;2, VvPIP1;3, VvPIP2;1, VvPIP2;2, VvPIP2;3). There was a significant increase in whole berry Rh and receptacle Rh in the latter stages of ripening (80–100 DAA), which was associated with deposition of gels or solutes in many receptacle xylem conduits. Peaks in the expression of some aquaporin isoforms corresponded to lower whole berry Rh 60 to 80 DAA, and the increase in Rh beginning at 80 DAA correlated with decreases in the expression of the two most predominantly expressed PIP genes. Although significant, the increase in berry Rh was not great enough, and occurred too late in development, to explain the decline in xylem flow that occurs at 60 to 75 DAA. The evidence suggests that the fruit is not hydraulically isolated from the parent plant by xylem occlusion but, rather, is “hydraulically buffered” by water delivered via the phloem.

Documentos Relacionados