Utilização do conceito de fugacidade na previsão do comportamento ambiental do carbosulfan e do carbofuran na cultura do arroz irrigado

AUTOR(ES)
DATA DE PUBLICAÇÃO

2005

RESUMO

Pesticide use to control pests, diseases and weeds is steadily increasing due to a general food demand increase, cropping area limitation, and manpower availability. Pesticide application without a sound knowledge may hazard environment and human health. Regulatory agencies enforces that, before a new product releasing to the market for agricultural use, intensive studies on its environment impacts ought to be developed. When a large and useful database is available, mathematical models are developed to estimate or predict product environmental behavior. In Brazil, although the available knowledge, practically there are no studies on fugacity concept applied to agricultural subjects. Fugacity in the proposed form might be a new tool in quantifying the movement, bioaccumulation and transfer of pesticides betweeen environment compartments. The objectives of this research work were: (a) to develop a preliminary method for predicting the environmental destination of carbosulfan and carbofuran insecticides applied to field irrigated rice, using a model based on the fugacity concept to delimit most vulnerable compartments; (b) to predict the behavior and environmental destination of carbosulfan and carbofuran molecules applied on field irrigated rice, using the fugacity concept; (c) to validate the prediction model by comparison with experimental data obtained under field conditions. The experimental data was obtained from a field irrigated rice experiment carried out at ?Varjão? Farm, district of Bariri, State of São Paulo, Brazil (21º59´47?S and 48º36´41?LGr) in a Gleissol type soil. Rice cv IRGA-420 was seeded in 11.22.2004, using the uppermost rice field area to avoid eventual contaminations. The property is divided in 1.5-2.5 ha-field areas, separated by rrigation or drainage channels. Traditionally, rice root weevil is controlled through carbosulfan application at the rate of 400 g a.i. ha-1. Eight sampling points were randomly located in the rice fields. The sampled compartments were: laminar water, soil solution and soil. The time sequence for water and soil solution samplings were 0, 24, 48, 96, 192, 378 and 678 hours after pesticide application, and for soil, 0, 24, 48, 96, 192, 378, 678, 1536 and 1656 hours after pesticide application. The carbofuran and carbosulfan degradation kinetics were evaluated through residue sample analysis. Residue identification and quantification were made through a mass selective detector (MSD) device coupled to a chromatograph. This equipment was operated in the system of ion monitoring mode (SIM), utilizing 160 and 164 fragments for the carbofuran and carbosulfan quantification, respectively. The experimental data and differential equations that describe the carbofuran and carbosulfan kinetics in the field rice water, allowed the insecticide half-life estimation in the three compartments: water, soil solution and soil. The estimated values for carbosulfan half-lives were: 1, 25 and 21 for water, soil and soil solution, respectively, and 3 and 10 days for carbofuran half-lives for the water and soil solution, respectively. The proposed model showed to be viable for the evaluation of insecticide behavior inthe irrigated field rice. High correlation was observed between data obtained by simulation and that from field experimentation, through residue analyses in the water and soil compartments. In an evaluation of environmental risks, the fugacity model level IV was adequate to estimate or predict the insecticide product destination

ASSUNTO(S)

rice irrigation arroz - irrigação agriculture environmental aspects inseticidas insecticides pesticidas - aspectos ambientais agricultura - aspectos ambientais pesticides modelos matematicos

Documentos Relacionados