Use of steady state free precession (SSFP) to enhance signal to noise ratio in high resolution NMR / Desenvolvimento da técnica de precessão livre no estado estacionário para aumento da razão sinal ruído em espectros de RMN de alta resolução

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

It was performed a detailed analysis of the advantages and disadvantages of Steady State Free Precession (SSFP) sequence for a rapid acquisition of 13C Nuclear Magnetic Resonance (NMR) spectra. The SSFP regime is obtained by the application of a pulse train with the same phase, duration and intensity, separated by a time interval (Tp) shorter than the transverse (T2) and longitudinal (T1) relaxation times. In these conditions it is possible to accumulate tens of spectra per units of T1, providing a significant increase in the spectrum signal-to-noise ratio (s/n). By comparing the spectra obtained by SSFP and conventional pulse sequence (90 degree pulse and T 5T1 p >= ) it was noted that SSFP shows an average gain of 30 times in analysis time for the same s/n. However, the SSFP spectra show phase and intensity anomalies due to the refocusing of the magnetization, generating a spin echo. We also compared the SSFP with the standard 13C pulse sequence, that uses a 30 degree pulses and Tp = 1.38 s. In this comparison the SSFP gain were small (5,5 times in analysis time for the same s/n), because the standard sequence also uses the advantage of SSFP (Tp

ASSUNTO(S)

ressonância magnética nuclear nuclear magnetic ressonance high resolution steady state free precession alta resolução precessão livre no estado estacionário

Documentos Relacionados