Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice.

AUTOR(ES)
RESUMO

Myogenin, as well as other MyoD-related skeletal muscle-specific transcription factors, regulate a large number of skeletal muscle genes during myogenic differentiation. During later development, innervation suppresses myogenin expression in the fetal hind limb musculature. Denervation of skeletal muscle reverses the effects of the nerve, and results in the reactivation of myogenin expression, as well as of other embryonic muscle proteins. Here we report that myogenin upstream sequences confer tissue- and developmental-specific expression in transgenic mice harboring a myogenin/chloramphenicol acetyltransferase (CAT) reporter construct. Using in situ hybridization to analyze serial sections of E12.5 embryos, we found colocalization of CAT and endogenous myogenin transcripts in the primordial muscle of the head and limbs, in the intercostal muscle masses, and in the most caudal somites. Later in development, we observed that the expression of the transgene and endogenous myogenin gene continued to be restricted to skeletal muscle but decreased shortly after birth; a period that coincides with the innervation of secondary myotubes. Furthermore, denervation of the mouse hind limbs induced a 10-fold accumulation of CAT and endogenous myogenin transcripts by 1 day after sciatic nerve resection; a 25-fold increase was observed by 4 days after denervation. Interestingly, we observed that the accumulation of CAT enzyme activity lagged considerably with respect to the increase in CAT transcripts. Our results indicate that the cis-acting elements that temporally and spatially confine transcription of the gene during embryonic development, and that mediate the responses to innervation and denervation of muscle, lie within the upstream sequences analyzed in these studies.

Documentos Relacionados