Ultrafiltration of cheese whey from fresh pre-mines treaty and microfiltered: effects of the flow volume and pressure in the transmembrane flow of permeate / Ultrafiltração do soro de queijo minas frescal pre-tratado e microfiltrado : efeitos da vazão volumetrica e da pressão transmembrana no fluxo de permeado

AUTOR(ES)
DATA DE PUBLICAÇÃO

2003

RESUMO

Pre-treatments of whey to improve the permeate flux in ultra filtration (UF) membrane processes are important for economic viability of whey protein concentrate (WPC) production. Moreover, pre-treatments can also be used to improve functional properties of whey proteins. Nevertheless, membrane fouling is the main technological problem concerned to dairy industries due to the permeate flux reduction during UF processo The goal of this work was to study the influence of pre-treatments like micro filtration (MF), pH adjustment and heat treatment, as well as operational parameters like volumetric flow and transmembrane pressure on ultra filtration permeate fluxo Samples of feed, retentate and permeate at CF 11,5 and 15 were analyzed for chemical composition (protein content, lipids, total nitrogen and ash), on MF and UF steeps, respectively. Sweet whey from Minas Frescal cheese was submitted at two pre-treatments: a combination of pH adjustment and heat treatment followed by micro filtration. Initially, pH was adjusted to 7,3 and heated at 55°C for 15 minutes. After it, the whey was micr filtrated in a ceramic membrane (Alumina), with an average diameter pore of 1,4 _ and permeation area of 0,24 m2. The volumetric flow was maintained constant at 4,3 m3fh, transmembrane pressure at 0,5 bar and temperature at 50°C. The permeate of MF step was then ultra filtered in a polissulfone membrane Hollow Fiber (Koch Membrane), MW lOkDa, with 1,3m2 of permeation effective area at constant temperature at 50°C. The transmembrane pressure varied between 0,5 and 2 bars and flow from 1,8 to 3,6m3fh until a concentration factor (CF) of 15. The WPC produced contain about 70% of total protein, in dry basis. It was observed, by statistical analysis, that transmembrane pressure and volumetric flow had a significant effect on permeate flux in the range value of parameters studied. Maximum flux (53,77 Kg/m2.h) was found with volumetric flow of3,6 m3fh and 2 bars of pressure. Protein yield (with values between 0,98 and 0,99) was not significantly affected by these parameters, which demonstrate that the interaction between the membrane and the product does not depend of there parameters. It was also observed that, with the increase of volumetric flow and the transmembrane pressure resulted, an increase in the percentage of variation of relation protein and lactose (PtlLact) at CF 15 relatively the feed. The maximum value (3610,89%) was obtained at the same condition of the best permate flux Kuo &Cheryan (1983) model showed better agreement to experimental data than Wu et aI. (1991) model, for all combinations of transmembrane pressure and volumetric flow at temperature of 50° C

ASSUNTO(S)

ultrafiltration queijo-de-minas cheese-of-mine whey cheese soro de queijo ultrafiltração

Documentos Relacionados