Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases.

AUTOR(ES)
RESUMO

During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9) and interstitial collagenase (matrix metalloproteinase 1), indicating that cellular expression of the recognition molecule NCAM regulates the metabolism of the surrounding matrix.

Documentos Relacionados